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Abstract 

The Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS) remains one of 

the greatest public health challenges still facing Nigeria and the entire world as it has become drug resistant in 

some patients. Hence, treatment failure and spread of drug resistant HIV/AIDS results. In view of this, it becomes 

imperative to assess the efficacy of the Antiretroviral Therapy (ART) treatment and hence the life expectancy of 

the HIV/AIDS patients. This was achieved in this study via a stochastic model based on the Markov chain 

modelling methodology. The CD4 cell counts of a sample of 28,582 patients (farmers) receiving treatment every 

six (6) months at the HIV counselling and Testing (HCT) unit of the Federal Medical Centre Makurdi, Benue 

State was used in the modelling process. The CD4 cell count states were developed based on the United States 

Centres for Disease Control and Prevention (CDC) classification system as follows; State 1: CD4 cell counts ≥ 

500 cells/μL, State 2: CD4 cell count in the range of 200 – 499 cells/ μL, and State 3: CD4 cell count < 200 cells/ 

μL. They represent the Good, Moderate and Poor health states of the patients respectively. The HIV/AIDS 

progression in the study was investigated using The N-Step transition probability Matrix of the Markov Chain 

while, the efficacy of the ART was examined from one CD4 cell count state to another using the Steady State 

probabilities of the Markov Chain as well as the Mean Recurrence Time of each CD4 count state. The study 

result shows that; the initial probabilities that a patient will stay in the good, moderate, and poor health states in 

the first six (6) months of the ART are; 0.834, 0.333 and 0.280 respectively. The overall efficacy of the ART 

showed a 78%, 19%, and 3.3% chances that a patient will be in the Good, Moderate and Poor health states 

respectively with  respective mean recurrence times of 0.64, 2.69 and 14.99 years. Further results shows that the 

total life expectancy of patients in the good and moderate health states are 20.425 and 19.275 years respectively. 

The study recommends that the methodology be applied to a cohort study to further validate study these results. 
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Introduction 

The human Immunodeficiency 

Virus/Acquired Immunodeficiency Syndrome 

(HIV/AIDS) is becoming drug resistant in some 

patients. This is posing a great challenge as some 

HIV patients do well for some extended period of 

time with low CD4 cell count, while some 

patients with very high CD4 cell counts 

deteriorate more rapidly. As a result, this lead to 

treatment failure and spread of drug resistant 

HIV/AIDS result. This compromises the 

effectiveness of the limited therapeutic options 

like the antiretroviral therapy (ART). Therefore, 

it becomes imperative to assess the efficacy of the 

ART treatment as well as predict the life 

expectancy of HIV-infected persons. 

However, recent studies using Markov 

Chain have been carried out in classifying the 

dynamics and natural history of HIV/AIDS, 

determining markers of disease progression, but 

fails to include the assessment of the ART 

efficacy. The focus of this work is to improve the 

work of Agada et al (2018).The Markov Chain 

Model of Agada et al (2018) was able to bridge 

this gap but failed to include the determination of 

the life expectancy of patients. This created 

another gap which this study intends to bridge.  

HIV/AIDS reduces the rate of growth 

particularly in countries most seriously affected 

with the disease. The effect of HIV/AIDS on 

agricultural production can be linked to labour 

and productivity as well as increase in post-

harvest losses. A strong supporter of this view is 

Parker et al (2009). They noted that HIV/AIDS 

affects not only the health of infected individuals, 

but also the socio-economic status of the 

individuals, their families and broader 

community. In recognition of the various impacts 

of HIV/AIDS to postharvest losses, Asenso-

Okyere et al (2010) stated that poor health due to 

AIDS brings hardships to households including 

debilitation, substantial monetary expenditures, 

loss of labour and eventually death. 

 

Review of Related works 

According to Joint United Nations 

Programme on HIV/AIDS (UNAIDS, 2014), an 

estimated 36.9 million people were living with 

HIV worldwide of which 3.2 million were 

estimated to be in Nigeria, the second largest 

burden  in the world after South Africa. However, 

only an estimated 1.1 million of these know their 

status accounting for just 30%.  Although, 88% of 

those who know their status are on treatment and 

81% of those infected with the virus have 

achieved viral suppression. This seems worse 

when considered the total number of people living 

with HIV, indicating that only 30% of people 

living with HIV in Nigeria are on treatment. A 

global scale-up of antiretroviral therapy (ART) 

have been known to be the major contributing 

factor that accounts for 48% decline in HIV-

related deaths worldwide from a peak of 1.9 

million in 2015. Around mid-2017, there were 

approximately 20.9 million people receiving 

ART which accounted for only 53% of people 

living with HIV at the end of 2016 (World Health 

Organization, WHO, 2018). 

Owing to the constant challenges posed 

by HIV/AIDS, (Agada et al., 2018) developed a 

Markov Chain Model to assess the progress and 

predicts the efficacy of antiretroviral therapy 

(ART) using the CD4 counts of HIV/AIDS 

patients. They concluded that the difference in the 

chances of the health state of patients might be 

due to antiretroviral drug resistance among other 

factors. They recommended that these factors 

should be identified and considered when 

administering ART to ensure very high chances 

of the good, moderate and poor health states. 

HIV infection progressively weakens the 

immune system by reducing the CD4 cell counts, 

thus making the patients vulnerable to various 

opportunistic infections (Grover et al., 2013). The 

CD4 cell counts provide a marker for 

characterizing the clinical stages of HIV patients. 

A part from being a leading marker of disease 

progression, CD4 cell counts have also been used 

as an indicator of Antiretroviral Therapy (ART) 

initiation . They are also used for disease 

progression, deciding when to commence 

therapy, staging the disease, determining 

treatment failure, and defining the risk for 

mother-to-child transmission (Agada et al., 

2018). 

The hallmark of the HIV infection is the 

progressive depletion of a class of lymphocytes 

named CD4+ which plays a pivotal regulatory 

role in the immune response to infections and 

tumours (Dessie, 2014). Mathematical models of 

HIV transmission that incorporate the dynamics 

of disease progression can estimate the potential 
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impact of adjunctive strategies to antiretroviral 

therapy (ART) for HIV treatment and prevention 

(Ross et al., 2016). 

A great deal has been accomplished over 

the past few years in elucidating the natural 

history of HIV infection and also developing 

treatments for HIV patients. To this end, Tarylee 

(2011) applied multistate Markov Model to HIV 

progression using CD4 count intervals with ARV 

initiation as an absorbing state. He analysed HIV 

progression using CD4 counts intervals of six 

months since enrolment on ART with the 

objective of investigating the probabilities of 

transitions to lower CD4 counts and estimating 

the average stay in the CD4 count states. Also, in 

modelling the progress of HIV/AIDS epidemic, 

Adeniyi (2014) applied Discrete-Time Markov 

process to modelled HIV/AIDS disease 

progression. The study concluded that the rate at 

which susceptible becomes infective and the rate 

at which infective becomes AIDS are crucial 

parameters which when kept low, the epidemic 

will be kept under control. 

Another research work on Markov Chain 

Modelling analysis of HIV/AIDS progression 

was a race-based forecast in the United States  

that investigated the most vulnerable racial 

minority population (the African Americans) in 

the United States and the second least affected 

(the Caucasians) in order to predict the trends of 

the epidemic ( Lee et al., 2014). The results 

revealed discrepancy in HIV infection, AIDS 

diagnosis and deaths due to HIV/AIDS among the 

African Americans and the Caucasians races. 

They stated that there is need for interventions 

focusing on HIV/AIDS prevention and 

management, optimum resource allocation and 

development of ANTI-AIDS campaigns to 

reduce the infection rate. 

The effects of Highly Active 

Antiretroviral Therapy (HAART) of stavudine, 

lamivudine and nevirapine on the CD4 

lymphocyte count of HIV-infected Africans was 

also studied (Erhabor et al, 2006; Rotich, 2016). 

In this study, changes in CD4 counts in the 

HAART treated subjects and the untreated 

controls were assessed based on starting baseline 

CD4 count; 200  cells/


L, 350200  cells/


L and 350 cells/


L. They concluded that it is 

important to access the CD4 lymphocyte count of 

HIV infected patients before the initiation of 

HAART, which is used as a prognostic marker in 

predicting the initial response to HAART and in 

determining the optimal time to initiate therapy. 

A determination of the life expectancy of 

HIV/AIDS patients in Anambra State using 

stationary and smoothed non-stationary Markov 

Chain Models is another research relevant to the 

study (Nwosu, 2015). The result of the study 

showed that the smoothed Non stationary Markov 

Chain Model is conceptually better than the 

stationary Markov Chain in determining the life 

expectancies of patients. Similarly, a multistate 

model to study the generation of mean transition 

time in transient state of HIV disease progression 

in Kenya using a four state Markov Model with 

reversible transitions was also considered 

(Mwambura and Karoki, 2017). The study 

concluded that CD4 cell count is a good indicator 

for gauging the strength of the immune system 

and determining whether a person is at risk of 

infection with certain organisms. 

 

Materials and Methods 

Sample Size/Study Population 

The study population consists of the CD4 

counts of 28,582 HIV/AIDS patients enrolled for 

care at the ART Centre of the HIV counselling 

and Testing (HCT) unit of the Federal Medical 

Centre (FMC) Makurdi, from January, 2008- 

July, 2018. It is of importance to this study that 

over 70% of the patients were farmers. 

 

Data description and Transformation 

The data details for this study include the 

CD4 counts of the HIV/AIDS patients, Date of 

visits and patients identification number. The 

patients present for treatment every six (6) 

months at the HIV counselling and Testing (HCT) 

unit of FMC Makurdi, Benue State. These 

parameters assisted the researcher in tracking the 

progress of treatment of each patient. The CD4 

cell counts of the HIV/AIDS patients were 

carefully organized to reflect the transition among 

health states. The states were defined as; CD4 cell 

count equal or greater than 500 cells/  L, CD4 

cell count between 200-499 cells/ L, and CD4 

cell count less than 200 cells/  L. This study 

largely adopted the revised United States (U.S) 

Centres for Disease Control and Prevention 

(CDC, 1993) classification system for HIV 

infection and Expanded Surveillance Case 
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Definition for AIDS among Adolescents and 

Adults. In view of the aforementioned, the health 

states were classified as states I, II, and III, 

representing the Good, Moderate and Poor health 

states of the patients respectively. 

 

Method of Data Analysis 

A three (3) state Markov Chain Model 

was used in the analysis of the transformed data. 

The mathematical details of the model is provided 

as follows. 

 

Basic mathematical concepts of the markov chain 

model 

Markov chain 

A Markov Chain is a sequence or chain of 

discrete states in time or space with fixed 

probabilities for the transition from one state to a 

given state in the next step in the chain. If a 

stochastic process {𝑋(𝑛); 𝑛 ≥ 0} is the series of 

transition from one state to another such that the 

probabilities associated with each transition 

depend only on the immediate past state of the 

process and not on how the process reached that 

state. Then the process is said to be markov 

dependent. That is if 

𝑃(𝑋𝑛|𝑋0, 𝑋1, … , 𝑋𝑛−1) = 𝑃(𝑋𝑛|𝑋𝑛−1)     1 

 

A stochastic process that is markov dependent is 

said to possess the markovian property. This 

property is equivalent to the statement that the 

conditional probability of any future state 

(𝑋𝑛+1 = 𝑗), given any past states(𝑋0 = 𝑖0, 𝑋1 =

𝑖1, … , 𝑋𝑛−1 = 𝑖𝑛−1), and the present state(𝑋𝑛), is 

independent of the past states. The markov 

property asserts that the process is memory-less. 

(Udom, 2010). 

 

Transition probability matrix 

Every Markov Chain has associated with 

it transition probabilities; the probabilities of 

moving from one state of the chain to another. 

(Udom, 2010). Transition probabilities are 

usually based on frequency distribution of the 

number of transition from one state to another in 

the system under consideration (using historic 

data). The frequencies are converted to estimates 

of the probabilities by dividing each row by its 

total. 

Consider a finite Markov Chain with r 

possible states, 𝑥1, 𝑥2, … , 𝑥𝑟 Let 𝑝𝑖𝑗 be the 

conditional probability that the process will be in 

state 𝑥𝑗 given that it was in state 𝑥𝑖 at the 

preceding observation time. The transition 

probability matrix of the Markov Chain is defined 

to be the 𝑟𝑥𝑟 matrix P with elements 𝑝𝑖𝑗. Thus, 


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 These elements 𝑝𝑖𝑗 are also called 

stationary probabilities. They are defined 

as  

 𝑃(𝑋𝑟 = 𝑗|𝑋𝑟−1 = 𝑖) =  𝑃𝑖𝑗 3 

N-Step transition probability matrix 

For any value of n (n = 2, 3, …), the nth 

power 𝑃𝑛 of the matrix P in equation (2) above 

which specify the probability𝑃𝑖𝑗
𝑛 that the chain 

will be in state j after n-steps given that it begins 

in state i is called the n-step probability matrix. 

 In general, the n-step transition 

probability matrix  

P(n) = Pn = Pn−1P, n ≥ 1. 

 

Steady state probability of a markov 

chain. 

Consider a Markov Chain with r-states 

and the row vector 

𝜋 = (𝜋1,𝜋2, … , 𝜋𝑟)              
Such that  

(i) 𝜋𝑖 ≥ 0  

(ii) ∑ 𝜋𝑖 = 1𝑖=1    

(iii) 𝜋𝑗 = lim
𝑛→∞

𝜋𝑖𝑗
𝑛  Where 𝑃𝑖𝑗 is defined in 

equation (2) above, then (𝜋1,𝜋2, … , 𝜋𝑟) is called 

the steady state vector of the Markov Chain. This 

means that as 𝑛 → ∞, the probability that the 

chain will transit from state 𝑥𝑖to a state 𝑥𝑗 is 

independent of the initial state 𝑥𝑖. 𝜋 can be 

obtained by solving the relation 

𝜋 = 𝜋𝑝  
 

The steady state probability matrix is 

shown below 
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It was used in this study to predict the long 

run (steady state) probabilities of patients when 

forecasting the efficacy of the ART.  

 

Mean recurrence time 

Assume that a process starts in state i.  

Consider the length of time before it returns to i 

for the first time. It is clear that, it must return, 

since it either stays at i the first step or go to some 

other state j, and from any other state j, it will 

eventually reach i because the chain is ergodic 

(Udom, 2010). Hence, we find the mean return 

time from the stationary distribution using the 

equation below. 

  𝜇𝑟 =  
1

𝜋𝑟
     5 

It was used in this study to compute the 

expected number of steps or expected time a 

patient returns to state i having started and 

transitioned from state i to state j. 

 

Absorbing State of a Markov Chain 

Definition. A state si of a Markov Chain is called 

absorbing if it is impossible to leave it (i.e., 𝑃𝑖𝑖 = 

1 and 𝑃𝑖𝑗 = 0). A Markov Chain is absorbing if it 

has at least one absorbing state, and if from every 

state it is possible to go to an absorbing state (not 

necessarily in one step). 

 

Canonical form of an absorbing markov chain 

Consider a finite Markov Chain with 

transition probability matrix p. If there are r 

absorbing states and t transient states, the 

transition matrix will have the following 

canonical form 

 

 

𝑃 =  
Q       R
0 I

   6

  

 

Where, I is an r-by-r identity matrix, 0 is 

an r-by-t zero matrix, R is a nonzero t-by-r 

matrix, and Q is a t-by-t matrix. The first t states 

are transient and the last r states are absorbing. As 

earlier mentioned, we noted that the entry 𝑃𝑖𝑗
(𝑛)

 of 

the matrix 𝑃𝑛 is the probability of being in the 

state 𝑠𝑗 after n steps, when the chain is started in 

state𝑠𝑖. A standard matrix algebra shows that 𝑃𝑛 

is of the form; 

 

𝑃𝑛 =  
Q𝑛 R
0 I

   7 

 

 

Where R is the t-by-r matrix in the upper 

right-hand corner of 𝑃𝑛. The form of 𝑃𝑛 shows 

that the entries of 𝑄𝑛 gives the probabilities for 

being in each of the transient states after n steps 

for each possible transient starting state. It was 

used in the work to segregate the number of 

patients that may fall out of the system and those 

expected to continue with the ART.  

 

Fundamental matrix 

The computation of (I-Q)-1 is called the 

fundamental matrix where I is an identity matrix. 

It was used in this study to determine the expected 

length of time a patient spends in the transient 

state j, having started from the transient state i. 

Thus, this model was used to calculate the life 

expectancy of patients in state j who entered the 

ART initiation in state i. The assumption here is 

that, life expectancy is a random stochastic 

variable prevailing in the HIV/AIDS dynamics 

(Nwosu, 2015). The fundamental matrix is 

denoted by; 

 

(𝐼 − 𝑄)−1 =[
𝐹11 ⋯ 𝐹1𝑁

⋮ ⋱ ⋮
𝐹𝑁1 ⋯ 𝐹𝑁𝑁

]   8 

 

Where I is an identity matrix and Q is the 

initial probability matrix 

Use of Statistical Software 

The Microsoft Excel (MS Excel, 2013) 

Package was employed in transforming the CD4 

counts of HIV/AIDS patients into states (I, II, and 

III), while a Pascal program (Turbo Pascal 

version 1.5) was used in computing powers of 

transition probability matrices as well as the 

steady state probability matrix. 

 

Results 

Assessing the Efficacy of ART to Patients 

without Absorption 

The CD4 cell counts of the 28,582 

HIV/AIDS patients were carefully organized and 

managed to reflect the transition among the states 

I, II and III representing the Good, Moderate and 

Poor health states of patients respectively for 

every six (6) months during the period under 

review. This is captured in (table 1) below.
TR. 

ABS. 

TR 

𝑄𝑛 R
0 I

ABS. 

TR. 

ABS. TR. 

ABS. 
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Table 1: CD4 Transition counts of the HIV/AIDS patients 

   I  II III Total 

I 13003 2337 246 15586 

II 5921 3263 604 9788 

III 1673 637 898 3208 

Total 20597 6237 1748 28582 

 

 

The initial transition probability matrix 

(P1) was obtained from table 1 above, by dividing 

the elements of each row by their corresponding 

row totals. This is shown in Figure 1 and 

represented in figure 2 by a transition diagram. 

This matrix shows the initial probabilities that a 

patient will transit from one health state to 

another in the first six (6) months of the ART 

initiation. The diagonal elements from the matrix 

indicates that there are 83%, 33% and 28% 

chances that a patient will stay in Good, Moderate 

and Poor health states respectively. While the off-

diagonal elements shows the chances of a patient 

transiting between the three health states 

respectively. The matrix below therefore, 

provides progress information on patient’s 

responses to the ART from the Good, Moderate 

and Poor health states in the first six (6) months 

of the ART initiation. 

 

 

 

 𝑃1 =   
0.834 0.150 0.016
0.605 0.333 0.062
0.521 0.199 0.280

        

  

Figure 1: Initial Transition probability Matrix in the first six (6) month 

 

 

                 

      

                             

                

 

Figure 2: Transition Diagram of patients between health states. 

 

N-Step Transition Probabilities 

However, for the remaining six (6) 

months interval appointments, the N-Step 

transition probability matrix was used and these 

were obtained by finding powers of the initial 

transition matrix (p1). The resulting matrices for 

p2, P3, P4,…, P12 showing the chances of patients 

transiting between the three health states at the 

2nd, 3rd,…, 12th six (6) months interval 

appointments are depicted in (tables 2). Thus, P12 

shows the steady state probability matrix of 

patient’s response to the ART. The diagonal 

elements of each matrix presented below 

indicates the chances that a patient will stay or 

maintain in Good, Moderate and Poor health 

states, while the off-diagonal elements shows the 

chances of a patient transiting between the three 

health states respectively as can be seen  in (tables 

2) below. 

 

 

II III I 

II 

III 

I 

I 

0.150 

II 

0.605 0.062 

 
0.016 

0.333 

0.199 

III 
0.834 0.280 0.521 
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Table 2: N-Step Transition probabilities  

Nth Six Month 

interval 

appointments 

 Transition Probability 

Actual State 

Previous State I II III 

2nd I 0.79464𝟐 0.17823𝟒 0.027124 

 II 0.738337 0.213977 0.047686 

 III 0.700789 0.200137 0.099074 

3rd I 0.784695 0.183946 0.031360 

 II 0.770074 0.191494 0.038432 

 III 0.757158 0.191480 0.051362 

4th I 0.782061 0.185199 0.032740 

 II 0.778119 0.186927 0.034955 

 III 0.774075 0.187558 0.038368 

5th I 0.781342 0.185496 0.033163 

 II 0.780253 0.185920 0.033827 

 III 0.779040 0.186203 0.034757 

6th I 0.781142 0.185571 0.033288 

 II 0.780836 0.185681 0.033483 

 III 0.780481 0.185778 0.033741 

7th I 0.781085 0.185591 0.033324 

 II 0.780999 0.185620 0.033381 

 III 0.780896 0.185651 0.033453 

8th I 0.781069 0.185596 0.033335 

 II 0.781045 0.185604 0.033351 

 III 0.781015 0.185613 0.033372 

9th I 0.781065 0.185597 0.033338 

 II 0.781058 0.185600 0.033342 

 III 0.781049 0.185602 0.033348 

10th I 0.781063 0.185598 0.033339 

 II 0.781061 0.185599 0.033340 

 III 0.781059 0.185599 0.033342 

11th I 0.781063 0.185598 0.033339 

 II 0.781063 0.185598 0.033339 

 III 0.781062 0.185598 0.033340 

12th I 0.781063 0.185598 0.033339 

 II 0.781063 0.185598 0.033339 

 III 0.781063 0.185598 0.033339 

 

The proceeding figures (3-5) were 

obtained from the table 2 above with view to 

better explain the progress of patients’ response 

to the ART. Figure 3 indicates the transition 

probabilities from states I, II, III to I after the first 

six (6) months of the appointment. The 

probability that a patient will stay or maintain in 

state I is 0.794642 (79%) chance while the 

chances that he/she will transit from states II, III 

to state I are 0.738337 (74%) and 0.700789 (70%) 

respectively for the second six (6) months 

appointment or period. This shows an erratic 

decline chance of the patient’s health improving 

from moderate and poor health states to the Good 

health state in the second six (6) months period 

under review. These chances decrease continually 

over the rest of the appointments and becomes 

constant or stable at the 12th appointment given a 
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steady state value at 0.781 explaining a 78% 

chance that a patient will be in Good health state 

at the long run. 

 

 

Figure 3. Transition probabilities of patients from states I, II, III to I 

The transition probabilities of patients 

from states I, II, III to state II is depicted in Figure 

4 below. In this situation, the probabilities that a 

patient will remain or stay in the Moderate health 

state is 0.213977 (21%) after the second six (6) 

months period or appointment. The chances of 

transition from the Good and poor health states to 

the moderate health state are 0.178234 (18%) and 

0.200137 (20%) respectively. However, these 

chances continue to change over the rest of the 

appointments and became steady during the 12th 

appointment which stood at a value 0.185598 

(19%). This indicates a 19% chance that a patient 

will be in the moderate health state at the long run. 

 

 

Figure 4. Transition probabilities of patients from states I, II, III to II 

 

Figure 5 below illustrates the transition 

probabilities of patients from states I, II, III to III. 

Here, the probability that a patient will remain in 

the poor health state is 0.099074 (9.9%) after the 

second six (6) months appointment. The chances 

of transiting from the Good and Moderate health 

states to the poor health state are 0.027124 (2.71) 

and 0.047686 (4.77%) respectively. 

Here also, the chances continued to 

mutate over the rest of the appointment and 

became steady during the 12th appointment at a 

value of 0.033339 (3.3%). This result shows that, 

there is a 3.3% chance that a patient will remain 

in the poor health state at the long run. 
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Figure 5: Transition Probabilities of patients from states I, II, III to III 

Mean Recurrence Times of Patients Health 

States 

The long run probabilities or steady state 

of patients in their respective health state were 

obtained from the chances of their respective 

states shown in (table 2) during the 12th 

appointment. This is shown in the matrix (P1) 

below represented as Figure 6.

 

  

P12 =      [
0.781063 0.185598 0.033339
0.781063 0.185598 0.033339
0.781063 0.185598 0.033339

] 

Figure 6: The long run probabilities or Steady state of patients Health States 

 

As earlier noted, this shows a 78%, 19%, 

and 3.3% chances that a patient will be in the 

Good, Moderate and Poor health states 

respectively. Mean recurrence time (years) for 

each state was computed by finding the reciprocal 

of their respective steady state probabilities and 

the resulting recurrence mean time for each state 

exhibited the following values as 0.64, 2.69 and 

14.99 respectively. 

 

Forecasting the Efficacy of ART 

The efficacy of a treatment or therapy is a 

measure of maximum response of patients to 

treatments (Agada et al., 2018). However, 

efficacy as used in this context or study is referred 

to as the long run ability of the ART to produce 

desired effects on the patients. Therefore, in 

forecasting the efficacy of the ART, we make use 

of the long run probabilities or steady state 

probabilities of patient’s health states. 

Hence, this information enable us to 

predict the long run (steady state) chances of 

patients being in a given health state. To this end, 

we stated that the overall efficacy of the ART is 

such that a patient will be in the Good health state 

78% of the time, 19% of the time in Moderate 

health state and 3.3% of the time in poor health 

state with mean recurrence times of 0.64, 2.69 and 

14.99 years respectively. 

 

Life Expectancy of the HIV/AIDS Patients 

When death is taken into account, we 

further modified the transition matrix for the three 

health states in Figure 1 and determine a new 

transition matrix (P*) for an absorbing Markov 

Chain. To do this, patients in the state III 

(𝐶𝐷4 𝑐𝑜𝑢𝑛𝑡 < 200) were considered to die out 

of the system. As earlier explained, the 

fundamental matrix is a model required for the 

computation of the life expectancy of the 

HIV/AIDS patients. 

The computation (I-P*)-1 is called the 

fundamental matrix where I is an identity matrix 

and P* is as defined above. It was used in this 

work to determine the expected length of time a 

patient spends in the transient state j, having 

started from the transient state i. This implies the 
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life expectancy of patients in state j who entered 

the ART initiation in state i.  

In order to compute the elements of the 

fundamental matrix, it is required to first 

determine the Canonical form of the original 

transition probability matrix (P) as this will help 

determine P*. The details is as follows. 

 

Let the Canonical form of matrix P be denoted as Pcan. Then, 

                    

Pcan =     
0.834 0.150 0.016
0.605 0.333 0.062
0.000 0.000 1.000

 

Hence,            

P* =  (
0.834 0.150
0.605 0.333

)        

And the fundamental matrix is now obtained by finding the inverse of the (I-P*) 

  -1  

(I-P*)-1  =  (
1 0
0 1

)   −   (
0.834 0.150
0.605 0.333

) 

 

= (
33.350 7.500
30.250 8.300

) 

Adding the row elements we have; 

 = (
40.85
38.55

) 

From the result of the fundamental matrix 

above, the life expectancies of patients in each 

health state before been absorbed is clearly shown 

as elements of the fundamental matrix. From this 

matrix, the total life expectancy of patients in the 

good and moderate health states were 20.425 and 

19.275 years respectively. Observe that the life 

expectancies are close. It is pertinent to note at 

this point that, the life expectancies of the patients 

are not 100%. This can be shown from their 

respective elements of the fundamental matrix. 

The differences in the life expectancies of the 

patients in states I and II might be the leading 

cause of death of patients in state III. 

 

Study Implication 

The results of the study implied that, HIV 

infected farmers will be strong all year round by 

the continuous use of ART as they carry out their 

farming activities during and after harvest. This 

will reduce HIV-related deaths and increase 

labour and productivity with decline in 

postharvest losses. 

 

Conclusion  

The following conclusions were made 

from the study. 

i. The initial probabilities that a patient will 

stay in the Good, Moderate, and Poor 

health states in the first six (6) months of 

the ART initiation were 0.834, 0.333, and 

0.280  chances respectively. 

ii. The overall efficacy of the ART is such 

that a patient will be in the Good health 

state 78% of the time, 19% of the time in 

Moderate health state and 3.3% of the 

time in Poor health state. 

iii. The mean recurrence times (years) of the 

Good, Moderate and Poor health states 

were 0.64, 2.69 and 14.99 respectively. 

I II III 

I 
II 

III 

I II 
I 
II 



Nigerian Annals of Pure and Applied Science Vol. 2, 2019   |257 

iv. The patients’ health were assessed at each 

appointment to be transiting between the 

Good, Moderate and Poor health states at 

defined chances. 

v. The total life expectancy of patients in the 

good and moderate health states were 

20.425 and 19.275 respectively. 

 

Recommendations 

The following recommendations were drawn 

from the study 

(i) The Markov Chain model should be used 

in assessing the efficacy of ART of 

HIV/AIDS patients. 

(ii) The methodology of this study should be 

applied to a cohort study to further 

validate study results. 
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