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ABSTRACT 
We propose a new hybrid method by embedding the extended four-step 

backward differentiation formulae of Akinfenwa & Jator (2015) into a one-

step method by a continuous approximation via multistep collocation 

technique for the solution of first-order stiff initial value problems of 

ordinary differential equations. The embedded hybrid block method 

(EHBM) here consists of four discrete formulae which are simultaneously 

used as integrators. Analysis of the properties of the EBHM indicate that the 

method is of order five, convergent, and A-stable making it suitable for 

solving stiff problems. Implementing the proposed method using some 

numerical examples shows its accuracy when compared with existing 

methods in the literature. 
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 INTRODUCTION 

n this paper, we shall consider the first order initial value problem (IVP) 

in ordinary differential equations (ODE) of the form 

0 0' ( , ( )), ( )y f x y x y x y 
     (1)  

on the interval 0[ , ]Nx x
 and assume the existence of a unique solution of 

(1). Over the years, many authors have sought different numerical 

solutions for (1) especially when it is stiff in nature. Curtiss and 

Hirschfelder (1952) first introduced a class of multistep methods called the 

backward differentiation formulae (BDF) which became well-known for 

the solution of stiff IVPs because they possess infinite regions of absolute 

stability Over the years, several A-stable methods for solving (1) have 

been developed and can be found in the literature, (see Watts & Shampine, 

1972; Musa et al., 2013; Kumleng et al., 2017; Yohanna, 2017; 

Nursyazwani & Zarina, 2019). Block methods as presented by Ibrahim & 

Nasarudin (2020) have some drawbacks that led to the introduction of 

hybrid methods. 

I 

http://napas.org.ng 

 
Original Article 

 
 

 

http://napas.org.ng/


 

 

 

 
http://napas.org.ng 

For : l.com                              

These hybrid methods are known have increased 

accuracy and stability properties (Ezzeddine & 

Hojjati, 2011). Onumanyi et al., (2001) 

reformulated the conventional BDF by embedding 

them into one-step hybrid methods which resulted 

in increased accuracy and improved stability 

properties of the method. 

In this paper, we will construct a hybrid method by 

embedding the extended BDF formula (EBDF) of 

Akinfenwa and Jator (2015) for step number 

4k   into a one-step method similar to Onumanyi 

et al., (2001) for the solution of first-order IVPs.

 

Derivation of the Proposed New Method 

 

The general form of the EBDF of Akinfenwa and Jator (2015) is given as 

  

 
1

1 1

0

( ) ( ) ( ) ( )
k

j n j k n k k n k

j

y t t y h t f t f  


    



  
                              (2) 

 

where 1( ), 0,..., 1, ( ) and ( )j k kt j k t t   
are continuous coefficients to be determined. Embedding 

(2) into a one-step method gives 

 

  

1

1 1 1 1

0

( ) ( ) ( ) ( )

k

k

j j k k n
n n

j k k k k

y t t y h t f t f  



  
 



 
   

 


              (3) 

When 4k  , (3) can be expressed explicitly as  

 

  

0 1 1 1 1 3 3 3 3 1 1

4 4 2 2 4 4 4 4

( ) ( ) ( ) ( ) ( ) ( ( ) ( ) )n n n n n ny t t y t y t y t y h t f t f              

       (4) 

 

where 

0 1 1 3 3 1

4 2 4 4

( ), ( ), ( ), ( ), ( ), ( )t t t t t t     

 are polynomial coefficients to be determined.  

 

From (4), we consider an approximate solution 
( )y x

for solving (1) by a polynomial 
( )p x

 in the form 

 

         

5

0

( ) ( ) j

j

j

y x p x a x


 
                                                                 (5) 

 

where the ja 
are coefficients to be determined.  Differentiating (5) gives 

 

         

5
1

0

'( ) '( ) j

j

j

y x p x ja x 



 
                                                             (6) 
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Evaluating (5) at the points 

1 1 3

4 2 4

, , ,n n n nx x x x  

 and its first derivative (6) at the points 

3

4

,nx 

1nx   leads to 

a system of six algebraic equations for the unknowns 0 1 2 3 4 5, , , , ,a a a a a a
 which when expressed in matrix 

form yields 

 

  

2 3 4 5

2 3 4 5

1 1 1 1 1 0

4 4 4 4 4

12 3 4 5

1 1 1 1 1

22 2 2 2 2

2 3 4 5
33 3 3 3 3

4 4 4 4 4
42 3 4

3 3 3 3
54 4 4 4

2 3 4

1 1 1 1

1

1

1

1

0 1 2 3 4 5

0 1 2 3 4 5

n n n n n

n n n n n

n n n n n

n n n n n

n n n n

n n n n

x x x x x

x x x x x a

a
x x x x x

a

ax x x x x

a
x x x x

a

x x x x

    
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    
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   
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   
   
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  
 
                             (7) 

 

Solving (7) for the unknowns where 
,0 1nt x x t   

 gives the coefficients of the polynomial
( )p t

in the form 

       

  

   0 1 1 1 1 3 3 3 3 1 1

4 4 2 2 4 4 4 4

( ) ( ) ( ) ( ) ( )n n n n n np t t y t y t y t y h t f h t f              

       (8) 

 

where  

2 3 4 5

0 2 3 4 5

1064 11236 18544 14528 4352
( ) 1

111 333 333 333 333

t t t t t
t

h h h h h
      

 
2 3 4 5

1 2 3 4 5

4

864 4824 9840 8704 2816
( )

37 37 37 37 37

t t t t t
t

h h h h h
     

 
2 3 4 5

1 2 3 4 5

2

1224 9276 22672 22592 7936
( )

37 37 37 37 37

t t t t t
t

h h h h h
      

 
2 3 4 5

3 2 3 4 5

4

2144 51304 134032 139520 50432
( )

111 333 333 333 333

t t t t t
t

h h h h h
     

 
2 3 4 5

3 2 3 4

4

112 2764 7576 8384 3200
( )

37 111 111 111 111

t t t t t
t

h h h h
      

 
2 3 4 5

1 2 3 4

9 78 232 288 128
( )

37 37 37 37 37

t t t t t
t

h h h h
     

 

Substituting these continuous coefficients into (8) and evaluating 
( )p t

at 1t   and 
'( )p t

 at 

1 1
, ,0

4 2
t 

 after a 

rearrangement gives the four discrete formulae 
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1 1 1 3 3 1

4 2 4 4

1 1 3 1 3 1

4 2 4 4 4

1 1 3 1 3 1
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37 112 9

268 67 268 2144
n n n

n n n

h
y y y f f f 

  











 

       
         (9) 

 

Eq. (9) is the one-step embedded hybrid block method (EHBM) for solving eq. 1 numerically 

 

Analysis of the New Block Method 

 

Error constants and order 

In this section, we consider the properties of the new block method (9) by studying the properties of (3) 

which include the local truncation error and order, consistency, and zero stability.  

The local truncation error associated with eq. (3) is the linear operator L  defined as 

 

     1
1 1

0

[ ( ); ] ' '
k

j k
j kk k

j k k

L y x h y x h h y x h h y x h  




     
     (10) 

 

where
 y x

is an arbitrary function, continuously differentiable on 
 ,a b

. Expanding 
 j

k
y x h

and the derivatives 

 

 1' k
k

y x h
and 

 'y x h
as Taylor series about x , and collecting terms in (10) gives 
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

 

 
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 
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


    (11) 

 

Thus, the method (3) is said to have order 
p

if 0 1 ... 0pc c c   
 but 1 0pc  

 and 1pc  is called the error  

 

constant (see Lambert, 1973). Table 1 gives the order and error constant of the EHBM (9). 
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Table 1. Order and Error constant of EHBM (9) 

 

Method Order Error constant 

1ny   
5 1

378880


 

1

4
n

y


 

5 41

11796480  

1

2
n

y


 

5 43

25067520


 

3

4
n

y


 

5 3

548864  
   

Following Lambert (1973), the EHBM (9) is consistent since its order 
5 1p  

. 

 

Stability Analysis 

Applying the Dahlquist test equation 
'y y

to (9),  as a parameter and setting z h gives 

 

1

1

4

1

2

3

4

3 8 36 8 12 1
1 0 0 0

37 37 37 37 37 37

1 37 35 29 19 19
1 0 0 0

96 192 16 192 18 144

51 13 37 31 413
0 0 01

153136 34 136 204 306

11127 81 459 21
0 0 01

212144 67 268 134
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   
   
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3

4

1

2

1
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n

n

n

n

y

y

y
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z







 
   
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Let 

3 8 36 8 12
1

37 37 37 37 37
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5
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111 133
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2144 268

B

z
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 
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 
 

  
 
 
 

 
  so that the stability 

polynomial of the method becomes  

 

 
( , ) det( )z A B   

        (13) 

 

4 3 3 4 4 4 2 4 3

4 4 3 3 2 3 3

20535 20535 4107 20535 143745 34225

18224 18224 18661376 36488 1166336 2332672

4107 20535 20535 6845

4665344 72896 116636 4665344

z z z z

z z z z

     

   

     

   
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Zero stability and convergence 

The EHBM (9) is said to be zero stable if no roots 

of the first characteristic polynomial ( , )z  has 

modulus greater than one and if every root of 

modulus one is simple. Thus, setting 0z  in (13) 

yields 

   320535
;0 1 0

18224
     

. Hence, 

1 2,3,41, 0  
 which confirms the zero -

stability of the EHBM (9) (see Fatunla, 1991). 

Accordingly, since consistency and zero-stability 

of the EHBM (9) have been established, the 

method is indeed convergent (see Lambert, 1973). 

 

Absolute stability 

To obtain the stability region of the EHBM (9), the 

stability polynomial (13) and its derivative are 

used to plot the region of absolute stability as 

indicated in figure 1. 

 

Figure 1: Region of Absolute stability of EHBM 

(9). 

The following definition will aid the interpretation 

of figure 1. 

A numerical method is said to be  -stable if its 

region of absolute stability contains the whole of 

the left-hand plane 
(Re 0)h 

 (Dahlquist, 

1963) 

Figure 1 clearly shows that the EHBM (9) is  -

stable.  

 

Numerical Experiments 

We compare results of the EHBM (9) with some 

numerical problems in the literature as follows: 

EBDF = Method by Ezzeddine and Hojjati (2011) 

for 4k  . 

HEBDF = Another method in Ezzeddine and 

Hojjati (2011) for 4k  . 

ECBBDF = Method by Akinfenwa and Jator 

(2015) for 
4,6k 

. 

EHBM = Method (9) for 1k  . 

Example 1: We consider a stiff system solved by 

Ezzeddine and Hojjati (2011) and Akinfenwa and 

Jator (2015). 

   

'

1 1 2 1

'

2 1 2 2

30 30 (0) 1

30 30 (0) 1

x

x

y y y e y

y y y e y





    

   
,
0 20, 0.01x h  

 

The stiffness ratio of the system is 1:200 and its exact solution is 1 2( ) , ( )x xy x e y x e  
. The results 

are shown in Table 2. 
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Table 2: Absolute Errors for Example 1 for 0.01h   

 

x

 

iy

 

Error in EBDF 

4, 5k p 
 

Error in HEBDF 

4, 5k p 
 

Error in ECBBDF  

 4k   

Error in EHBM 

1k   

1.0 
1y

 

2y
 

131.71 10  
122.60 10  

8.15×
1510

 

8.48×
1310

 

1.28×
1510

 

1.17×
1410

 

1.11×
1510

 

8.88×
1610

 

10.0 
1y

 

2y
 

175.03 10  
163.36 10  

9.83×
1810

 

7.71×
1710

 

1.08×
1910

 

1.62×
1810

 

1.22×
1910

 

3.86×
1910

 

20.0 
1y

 

2y
 

1.17×
2010

 

7.83×
2110

 

1.29×
2110

 

2.79×
2110

 

7.24×
2310

 

5.29×
2310

 

5.33×
2310

 

2.77×
2310

 

 

Example 2: We consider another stiff system of initial value problem solve by Akinfenwa and Jator 

(2015) for different step sizes: 

  

21 19 20 1

'( ) 19 21 20 ( ),   y(0) 0 ,      0 20

40 40 40 -1

y x y x x

    
   

    
   
         

 

The three components of the theoretical solution of the problem are given as  

 

 






























))40cos()40(sin(2

)40sin()40(cos(

)40sin()40(cos(

)(
40

402

402

2
1

xxe

xxee

xxee

xy
x

xx

xx

      
 

The main aim is to show the order and accuracy of the EHBM for different choices of the constant step 

size h. The results are shown in Table 3. 

 

Table 3: Maximum errors for Example 2  

 

h  4k   ECBBDF 

Order 5m   

6k   ECBBDF 

Order 5m   

1k   EHBM 

Order 5m   

0.01 43.08 10  
59.88 10  

82.52 10  
0.005 67.77 10  

61.76 10  
102.54 10  

0.0025 71.41 10  
82.69 10  

126.74 10  
0.00125 92.31 10  

103.96 10  
131.07 10  

0.00625 126.26 10  
126.26 10  

141.61 10  
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DISCUSSION AND CONCLUSION  

 

We derived an A-stable one-step embedded hybrid 

block method for the solution of stiff first-order 

ordinary differential equations using multistep 

collocation approach. The method developed was 

also found to be zero-stable and consistent and as 

such convergent. The new embedded hybrid block 

method though has a lower step number 1k   

yielded the least absolute errors when compared 

with higher step numbers 
4,6k 

 block methods 

on the same problems solved by previous 

researchers. Clearly, the results from the three 

examples indicate that the new method competes 

favourablly with other existing methods. 
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